首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69710篇
  免费   12537篇
  国内免费   4849篇
化学   70668篇
晶体学   991篇
力学   1644篇
综合类   107篇
数学   5355篇
物理学   8331篇
  2024年   13篇
  2023年   248篇
  2022年   375篇
  2021年   697篇
  2020年   1061篇
  2019年   2798篇
  2018年   2612篇
  2017年   3104篇
  2016年   3470篇
  2015年   5678篇
  2014年   5506篇
  2013年   7812篇
  2012年   6159篇
  2011年   5740篇
  2010年   4657篇
  2009年   4580篇
  2008年   4862篇
  2007年   4263篇
  2006年   4015篇
  2005年   3755篇
  2004年   3208篇
  2003年   2845篇
  2002年   3463篇
  2001年   1844篇
  2000年   1688篇
  1999年   850篇
  1998年   258篇
  1997年   227篇
  1996年   174篇
  1995年   180篇
  1994年   138篇
  1993年   140篇
  1992年   125篇
  1991年   86篇
  1990年   61篇
  1989年   60篇
  1988年   75篇
  1987年   39篇
  1986年   30篇
  1985年   24篇
  1984年   20篇
  1983年   16篇
  1982年   22篇
  1981年   12篇
  1980年   17篇
  1979年   18篇
  1978年   17篇
  1977年   14篇
  1976年   18篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
2.
蒋峰景  宋涵晨 《化学进展》2022,34(6):1290-1297
液流电池是一种安全性高、使用寿命长、可扩展的大规模储能系统,可以协助电网调峰储能,提高能源利用率,发展前景广阔。双极板是液流电池的重要组成部分。功能上起到了分隔、串联电池、传导电流、为电堆提供结构支撑等作用。从成本构成角度看,双极板的价格占电堆成本的比重也较大。开发高性能、低成本的双极板对加快液流电池的商业化应用具有重要意义,也是目前业界的迫切需求。虽然文献上报道了许多针对液流电池双极板开发的工作,但是目前高性能、低成本的液流电池双极板产品仍无法充分满足市场需求。本文着重介绍了石墨基复合双极板的研究现状,介绍了材料选择、工艺流程对关键性能的影响,对相关工作进行了评述,并为液流电池双极板的开发提出了建议。  相似文献   
3.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
4.
Ronald Pethig 《Electrophoresis》2019,40(18-19):2575-2583
Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius‐Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular‐scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed.  相似文献   
5.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
6.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
7.
8.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
Cinnamaldehyde (CA), an active ingredient isolated from the traditional Chinese medicine Cortex Cinnamomi, has a wide range of bioactivities. To clarify the distribution characteristics of CA, a selective and sensitive method utilizing gas chromatography–mass spetrometry was initially developed for simultaneously determining the concentration of CA and its metabolite cinnamyl alcohol in rat tissues. Selected ion masses of m/z 131, 105 and 92 were chosen, and separation of the analytes was performed on a DB‐5 ms (30 m × 0.25 mm, 0.25 µm, thickness) capillary column by gas chromatography–mass spectrometry. The calibration curves demonstrated good linearity and reproducibility over the range of 20–2000 and 20–4000 ng/mL for various tissue samples. Recoveries ranged from 86.8 to 107.5%, while intra‐ and interday relative standard deviations were all <11.3%. The analysis method was successfully applied in tissue distribution studies for CA and cinnamyl alcohol. As CA and cinnamyl alcohol may inter‐convert to one another, simultaneous determination of both analytes provides a comparative and accurate data for tissue study. The concentrations of CA and cinnamyl alcohol remaining in spleen were the highest among the main organs, including heart, liver, spleen, lung, kidney and brain. In addition, there was no long‐term accumulation of CA in rat tissues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号